BI-APC: Bidirectional Autoregressive Predictive Coding for Unsupervised Pre-training And Its Applications to Children's ASR Ruchao Fan, Amber Afshan, Abeer Alwan

Samueli

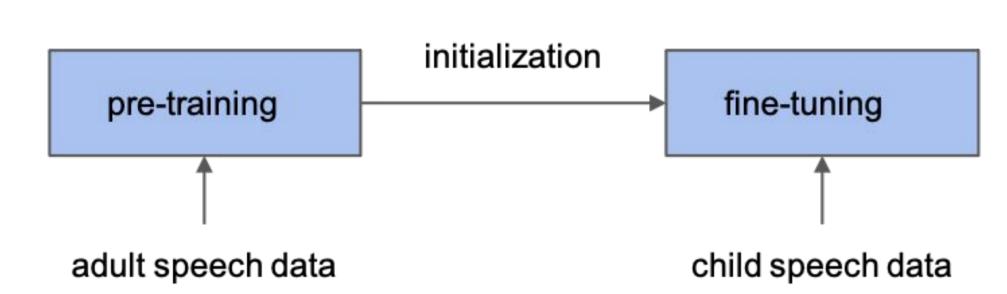
Electrical & Computer Engineering

Introduction

•Child speech recognition challenges [1]:

•High degrees of acoustic and linguistic variability

 Lack of large, publicly-available and annotated databases • Supervised pre-training methods have been explored to solve the data scarcity problem using adult speech, while


- unsupervised pre-training methods are not well explored. •Limitations of unsupervised pre-training methods are:
 - •Partial prediction problem, such as in masked predictive coding (MPC) [4]
 - Use context information from only one direction, such as in autoregressive predictive coding (APC) [3]
- •Goal: Develop pre-training methods for improving children's ASR performance using adult speech data.
- •Novel contributions: 1) APC is used as a pre-training method instead of a speech representation extractor. 2) Bidirectional APC (Bi-APC) is proposed to fully utilize self-supervisions in both directions. 3) Different pre-training methods are compared.
- •The proposed Bi-APC is comparable in performance to supervised pre-training for BLSTM.

Model Pre-training

•Goal: Improve the performance of low-resource tasks •Two-step process:

Pre-training on a data-sufficient task (adult models)

• Fine-tuning on the target low-resource task (child models)

• Pre-training methods:

1. Supervised pre-training (SPT) methods

- Pro: Optimize the negative log-likelihood, which is the same as that used in the fine-tuning task.
- **Con:** Transcriptions are required, but can be expensive to obtain.

2. Unsupervised pre-training (UPT) methods

- Pros: Regard input features as supervision and optimize the L_1 norm, and unlabeled data are easy to obtain.
- **Con:** Performance of current methods is worse than SPT.

fanruchao@g.ucla.edu

Department of Electrical and Computer Engineering, University of California Los Angeles, USA

Autoregressive Predictive Coding (APC)	•
 Predicts future frames n steps ahead [3]. 	
$x_{1+n} x_{2+n} x_{T} \longrightarrow \text{Ground truth for each frame} \\ \longrightarrow \text{Hidden_size -> feature_dim} \\ \text{L1 Loss: } \sum_{t=1}^{T-n} x_{i+n} - y_{i} \\ y_{i} \text{ is the output of each frame} \\ y_{i} \text{ is the output of each frame} \\ \end{array}$	
 Pro: Unlike MPC [4], no frames are masked. Con: Uses past context only, so unsuitable for BLSTM. 	
Proposed Bidirectional APC (Bi-APC)	•
 Motivation: Bidirectional models, like BLSTM outperform their unidirectional counterparts for ASR. Image: Portune of the state of the s	1
•Bi-APC loss function: $L_{\text{Bi-APC}} = 0.5 \cdot \sum_{t=1}^{T-n} x_{t+n} - y_t^{fwd} + 0.5 \cdot \sum_{t=n+1}^{T} x_{t-n} - y_t^{rev} $ •Equivalent to jointly training APC in two directions. on is set to 2, T is the number of frames for each utterance.	2
•x is both the input and the ground truth, y is the output of the model.	
Experimental Setup	
 Dataset Pre-training task: Lirispeech adult dataset (960 hours) Fine-tuning task: OGI kid dataset (scripted part, 50 hours) For OGI, 7:3 training testing split 	

Training Configurations

- Acoustic Model (AM):
- ■80-dim log-mel filterbank features
- ■uni-LSTM: 4 layer with 800 hidden units
- ■BLSTM: 4 layers with 512 hidden units in each direction
- ■Output: 5776 for SPT adult models, 80 for UPT using adult data, 1360 pdf-ids for fine-tuning child models
- Pre-training task: 8 epochs
- ■Fine-tuning task: 15 epochs, last three models were averaged for evaluation
- OPronunciation Model: Lexicon from Librispeech
- OLM: n-gram LMs from Librispeech dataset
- ■A 14M tri-gram LM was used for first pass decoding
- ■A 725M tri-gram LM was used for rescoring
- ■Results of rescoring are reported

Toolkits: Pykaldi2 for NN training, Kaldi for feature extraction and decoding

Results and Discussion

Baseline

. WERs of baseline systems, including uni-LSTM and BLSTM Table 1. trained with Librispeech and OGI data, respectively.

WERs(%)	Libri	Children	
Trans(10)	test-clean	test-other	ogi-test
Ac	lult Model -	Librispeech	
uni-LSTM	5.71	15.15	65.90
BLSTM	4.90	12.59	59.12
Ch	ild Model - (OGI Corpus	
TDNN-F [2]		-	10.71
uni-LSTM	95.77	97.28	12.58
BLSTM	86.82	92.15	9.16

Adult models perform poorly for child speech.

 BLSTM outperforms uni-LSTM, motivating us to explore bidirectional pre-training.

. Comparison of pre-training methods

Table 2. Comparison of supervised pre-training (SPT) and unsupervised pre-training (UPT) in terms of WER (%) for both LSTM and BLSTM acoustic model architecture. The results are for ogi-test. We also provide word error rate reduction (WERR) compared to the baseline. *: p<0.05.

WI	ERs(%)	uni-LSTM	WERR	BLSTM	WERR
Ba	aseline	12.58	1.20	9.16	-
	SPT	11.85	5.8%	8.46	7.6%*
	MPC [4]		1000	9.02	1.5%*
UPT	APC	11.76	6.5%	8.85	3.4%*
	Bi-APC	3 - 2	-	8.57	6.5%*

146–150.

This work was supported in part by the NSF.

•APC works well for uni-directional models, but is not as effective for bidirectional models.

•For BLSTM models, APC outperforms MPC since more frames participate in the prediction.

•Bi-APC can obtain similar improvements compared to SPT (p=0.136), and can benefit from more unlabelled data.

3. Performance breakdown by age groups

Table 3. BLSTM-based ASR performance breakdown based on age groups of kindergarten to grade 2, grade 3-6 and grade 7-10.

WERs(%)	K0-G2	G3-G6	G7-G10
Baseline	18.87	7.24	5.51
+SPT	17.43	6.66	5.11
+APC	18.07	7.03	5.40
+Bi-APC	17.23	6.91	5.26

• ASR performance performs worse for younger children. • Bi-APC provides slightly better results than SPT for younger children, but the improvement is not statistically significant.

• The larger variability in younger children's speech causes a large mismatch between pre-training and fine-tuning when using SPT, while Bi-APC can learn more general initial parameters (prior knowledge) for fine-tuning.

Conclusion

• APC can help children's ASR as a model pre-training method, but it is not suitable for bidirectional models.

• The proposed Bi-APC extends the APC to bidirectional pre-training and can be comparable in performance to SPT for bidirectional models.

References

[1] S. Lee, A. Potamianos, and S. Narayanan, "Acoustics of children's speech: Developmental changes of temporal and spectral parameters," JASA, vol. 105,no. 3, pp. 1455-1468, 1999.

[2] Fei Wu, Leibny Paola Garcia, Daniel Povey, Sanjeev Khudanpur, "Advances in automatic speech recognition for child speech using factored time delay neural network," Interspeech, 2019, pp. 1–5.

[3] Yu-An Chung, Wei-Ning Hsu, Hao Tang, and James Glass, "An Unsupervised Autoregressive Model for Speech Representation Learning," in Interspeech, 2019, pp.

[4] Dongwei Jiang, Xiaoning Lei, Wubo Li, Ne Luo, Yuxuan Hu, Wei Zou, and Xiangang Li, "Improving transformer-based speech recognition using unsupervised pre-training," arXiv preprint arXiv:1910.09932, 2019.

Acknowledgement