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« Child speech recognition challenges [1]:
o High degrees of acoustic and linguistic variability
o Lack of large, publicly-available and annotated databases
« Supervised pre-training methods have been explored to solve the data scarcity problem
using adult speech, while unsupervised pre-training methods are not well explored.
. Limitations of unsupervised pre-training methods are:
o Partial prediction problem, such as in masked predictive coding (MPC) [4]
o Use context information from only one direction, such as in autoregressive predictive
coding (APC) [3]



UCLA Esle?t!;cr;:\gg!!nputer Engineering This Work

« Goal: Develop pre-training methods for improving children’s ASR performance using adult
speech data.
« Novel contributions:
o APC is used as a pre-training method instead of a speech representation extractor.
o Bidirectional APC (Bi-APC) is proposed to fully utilize self-supervisions in both directions.
o  Different pre-training methods are compared.
« Bi-APC was shown to be comparable to supervised pre-training for bidirectional models
(BLSTMs) for child ASR.
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Outline
. DNN-HMM ASR system

« Model pre-training

o  Supervised pre-training

o Unsupervised pre-training
m Mask predictive coding (MPC)
m Autoregressive predictive coding (APC)
m Proposed Bidirectional APC (Bi-APC)

Experimental Setup

Results using the OGI database

Conclusions
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« Acoustic model (AM)

DNN-HMM ASR system

o Input: frame sequence of speech feature

X

= {x1,x2,..., 27}

o Frame-level label obtained from forced alignment e
L i
Y = {195, ur} wlli= =
o  Obijective: Maximize the log-likelihood ai it
hol —f
logP(Y|X) = log [T, P(w:|X)

« Prononciation model (PM)

o Connect phones and words, rule-based by linguists Y—>W

. Language model (LM)

V'S
L
State Space

© N-gram: P(‘V) = P(wl)P(’wg|w1)P(w3|w1,w2)...P(wU\wl,...,wU_l)
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o Goal: Improve the performance of low-resource tasks.

« Two-step process:

o Pre-training on a data-sufficient task (adult acoustic models)

o Fine-tuning on the target low-resource task (child acoustic models)

pre-training

initialization

|

adult speech data

fine-tuning

|

child speech data

o Pre-training methods depending on whether the pre-training data is labelled:

o  Supervised pre-training

o Unsupervised pre-training
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« Supervised pre-training (SPT)
o Pro: Optimize the negative log-likelihood, which is the same as that used in the
fine-tuning task.
o Con: Transcriptions are required, but can be expensive to obtain.
« Unsupervised pre-training (UPT)
o Pros: Regard input features as supervision and optimize the L. norm, and unlabeled
data are easy to obtain.
o Con: Performance of current methods is worse than SPT.
o Common methods:
m Mask predictive coding (MPC)

m Autoregressive predictive coding (APC)
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o &I Ca - e Bert style pre-training [Jiang et al. 2019]
. < T N > 1. 15% (usually) of the frames are masked out.
Le | 2. Predict the masked frames with other frames.
- 3.  Minimize L1 loss function for masked frames

« Pro: Pre-training task uses context information from both directions.

« Con: Only about 15% of the frames are masked in the calculation of the loss function.
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« Neural Language model style pre-training [Chung et al. 2019].

« Predict future frames n steps ahead.

X14n  X2+4n X7 — Ground truth for each frame

— Hidden_size -> feature_dim

I

y; is the output of each frame

::
+—

« Pro: Unlike MPC [4], no frames are masked.

. — -
- L1 Loss: XI=F [%iiy — 2l
—
-

« Con: Uses past context only, so unsuitable for BLSTM.
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How to use bidirectional context and include

more frames into prediction?

10
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Bidirectional models, like BLSTM outperform

their unidirectional counterparts for ASR, and APC is not

suitable for BLSTM.
« Proposed Bi-APC: Decompose forward computation of
BLSTM into Layer P
o Forward path: predict a frame n steps after the ..
current frame given all the past frames. Layer2
o Reversed path: predict a frame n steps before the .

current frame given all the future frames.

Reverse Label
{Z1, oy Tty ey TT}

Forward Label
{mn: ceey Ligmy ooy TT- n}

Yi—1 y; Yi+1

"fhfil‘ rhy,| ‘:fh{v ‘ rhyY llfhﬁ:l“ rhi,

{fhiy) [rh? )< L fn? | 7}{ o{fhEg) [k, <

11
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Reverse Label

« Bi-APC loss function: {1, oy Tty ooy TT}

Forward Label
{mn: ooy Lipqmy oey - n}

v

Yi—1 | Y Yiv1

T—n d by :
Loiare = 0.5: 3 lwven =47 “[+0.5: ) |at-n—y;*"] I AR R A
t=1 t=n+1
Layer 2 *"fhtz—l‘ "I‘h?_lr \t | ‘_>\—‘—fh? ] ',-};1277 }(—‘ l—)!fh?_._l‘ i"h?*lr e«
~|
Layer1  eeeees Lfhg | (B2 | e
. Equivalent to jointly training APC in two directions. \

. Task ratios are empirically set to 0.5.
« nisempirically setto 2, T is the number of frames for each utterance.

« X is both the input and the ground truth, y is the output of the model.

12
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. Datasets
o Pre-training task: Librispeech adult dataset (960 hours)
o Fine-tuning task: OGI child dataset (scripted part, 50 hours)
o For OGil, 7:3 training testing split
« Training Configurations
o  Acoustic model:
m 80-dim log-mel filterbank features
m  Uuni-LSTM: 4 layers with 800 hidden units
m BLSTM: 4 layers with 512 hidden units in each direction
m Output: 5776 pdf-ids for SPT adult models, 80 for UPT using adult data, 1360

pdf-ids for fine-tuning child models,
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Training Configurations

o

o

o

AM (con’t):
m Pre-training task: 8 epochs

m Fine-tuning task: 15 epochs, last three models were averaged for evaluation

PM: Lexicon from Librispeech dataset
LM: n-gram LMs from Librispeech dataset

m A 14M tri-gram LM was used for first pass decoding

m  A725M tri-gram LM was used for rescoring

m Results of rescoring are reported

Toolkits:

o

Pykaldi2 for NN training, Kaldi for feature extraction and decoding

14



WERSs of the baseline systems

WERs(%) Libri-adult Children
test-clean  test-other  ogi-test
Adult Model - Librispeech
uni-LSTM 5.71 15.15 65.90
BLSTM 4.90 12.59 59.12
Child Model - OGI Corpus
TDNN-F [2] - 10.71
uni-LSTM 95.77 97.28 12.58
BLSTM 86.82 92.15 9.16

UCLA Esle?t!;gllé%!lmputer Engineering Results - Baseline

Adult models perform poorly for child
speech, which is predictive.
BLSTM outperforms uni-LSTM, motivating

us to explore bidirectional pre-training

15
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WERs comparison of SPT and UPT for both uni-LSTM and BLSTM child models

WERs(%) uni-LSTM  WERR BLSTM  WERR

Baseline 12.58 . 9.16 -
SPT 11.85 5.8% [8.46 7.6% |
MPC [4] - - 9.02 1.5%"
UPT APC 11.76 6.5% |8.85 3.4%"*
Bi-APC : . [8.57 6.5%" |

« APC works well for uni-directional models, but is not as effective for bidirectional models.

« For BLSTM models, APC outperforms MPC since more frames participate in the prediction.

« Bi-APC can obtain similar improvements compared to SPT (p=0.136), and can benefit from

more unlabelled data.

16
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BLSTM-based child system performance breakdown based on age groups

WERs(%) KO0-G2 G3-G6 G7-G10

Baseline 18.87 1.24 3:51
+SPT 6.66 5.11
+APC 18.07 7.03 5.40
+Bi-APC 6.91 5.26

« ASR performance performs worse for younger children.

. Bi-APC provides slightly better results than SPT for younger children, but the improvement
is not statistically significant.

« The larger variability in younger children’s speech causes a large mismatch between

pre-training and fine-tuning when using SPT, while Bi-APC can learn more general initial

parameters (prior knowledge) for fine-tuning.

17
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« APC can help children’s ASR as a model pre-training method, but it is not suitable for
bidirectional models.
« The proposed Bi-APC extends the APC to bidirectional pre-training and can be comparable

in performance to SPT for bidirectional models.

« Future work: Use Bi-APC for other bidirectional models like transformer.

18



UCLA Esb?'cﬁgggymputer Engineering References

[11 S. Lee, A. Potamianos, and S. Narayanan, “Acoustics of children’s speech: Developmental changes of temporal and spectral
parameters,” JASA, vol. 105,n0. 3, pp. 1455-1468, 1999.

[2] Fei Wu, Leibny Paola Garcia, Daniel Povey, Sanjeev Khudanpur, “Advances in automatic speech recognition for child speech using
factored time delay neural network,” Interspeech, 2019, pp. 1-5.

[3] Yu-An Chung, Wei-Ning Hsu, Hao Tang, and James Glass, “An Unsupervised Autoregressive Model for Speech Representation
Learning,” in Interspeech, 2019, pp. 146-150.

[4] Dongwei Jiang, Xiaoning Lei, Wubo Li, Ne Luo, Yuxuan Hu, Wei Zou, and Xiangang Li, “Improving transformer-based speech recognition

using unsupervised pre-training,” arXiv preprint arXiv:1910.09932, 2019.

Acknowledgement

e  This work was supported in part by the NSF.

19



