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« Attention-based encoder decoder (AED) speech recognition models achieve great success
in recent years, especially for transformer architecture-autoregressive transformer (AT).
. However, the autoregressive mechanism in decoder slows down the inference speed.
« Non-autoregressive transformer (NAT) was proposed for parallel generation to accelerate
the inference.
. Limitations for current NAT models
o Iterative NAT still needs multiple generation steps, which cannot fully exploit the
potential of NAT for faster inference.
o Single step NAT extracts incomplete acoustic representations on the decoder side,

and thus the WER performance is worse than AT.
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We propose a novel framework, CTC alignment-based single step NAT (CASS-NAT).

o CTC alignment provides auxiliary information to extract token-level acoustic

embedding, which replaces word embedding on the decoder side.

An error-based sampling alignment strategy during inference is proposed to improve the
WER performance.
The proposed methods achieve WERSs of 3.8%/9.1% on Librispeech test clean/other dataset
without an external LM, and a CER of 5.8% on Aishell1 Mandarin corpus, respectively.
Compared to the AT baseline, the CASS-NAT has a performance reduction on WER, but is
51.2x faster in terms of RTF.
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« Autoregressive decoder (neural language model)

Y2 Y3

« Non-autoregressive Transformer (NAT) depending on number of iterations
o lterative NAT
o Single step NAT
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Decoder training as Mask language model (MLM) [Chen et al. 2019]
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Refinement based on CTC output [Higuchi et al. 2020]
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« Use acoustic representation for semantic modeling.

9 PAllInc.

« Assumption: acoustic representation can also capture language semantics, like word embedding.
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Can we find a better acoustic representation
to fit the assumption?

Token-level acoustic embedding!
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. CTC alignment-based single step non-autoregressive transformer (CASS-NAT)

« The idea is to replace word embedding with the token-level acoustic embedding.

« Encoder: extract high level representation H

« For example, first index of each token is end acoustic boundary

« CTC: optimize CTC alignment that offers information for acoustic @?
embedding extraction. T

o  Time boundary for each token (trigger mask) S e
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. LayerNorm
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Framework of CASS-NAT
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« The CTC alignment Z is introduced as a latent variable.

. Given: X = {z1,....,2¢,...,zTr}and Y = {y_l,...yu,...,yu}, the objective function is:

log P(Y|X) =logEzx[P(Y|Z,X)], Z€q.
where q is the set of alignments which can be mapped to Y

« To further reduce the computational cost, the maximum approximation is applied:

log P(Y|X) > Ez x[log P(Y|Z, X)]
U
~ max log H P(yulzt, i+1:te)T1:T)

u=1

where t,, is the end boundary of token u.
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« The final objective function is:
LdCC = maxz log HEZ:I p(yu |ztu—1 R B2 X)
i b
Lioint = Laec + A - log » _ [ [ P(=:|X)

Zeqgi=1

- Viterbi-alignment over CTC output space is used to optimize [, ,_.

« Ais empirically set to 1.

« Semantic modelling is relied on decoder with token-level acoustic embedding.
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« How to obtain CTC alignment during inference
o Ideally, oracle alignment (forced alignment with ground truth)
o Best path alignment (BPA)
m Pro: one step inference, fast ~ Con: alignment is not accurate.
o Beam search alignment (BSA)
m Pro: alignment is accurate Con: beam search inference, slow
. How to obtain an accurate alignment in a fast way?
o Error-based sampling alignment (ESA)
m Sampling over CTC output space is time consuming.
m Sampling based on best path alignment is easier.

m For those frames with low probability, consider other tokens.
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e Input and output:
o 80-dim log-mel filter bank features, computed every 10ms with a 25ms window.
o Every 3 consecutive frames are concatenated to form a 240-dim input.
o The output labels consist of 5k word-pieces obtained by SentencePiece [24].
« Model
o 2 CNNs: 64 filter, kernel size 3, stride 2 => 4x frame rate reduction
o AT baseline: Ne =12, Ng = 6,dpr = 2048, H = 8,dympua = 512
o CASS-NAT:
m 1-layer token-acoustic extractor
m Decoder: 3 self-att blocks and 4 mix-attn blocks

« SpecAug, Label smoothing, Encoder initialization
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A comparison of accuracy and speed of Autoregressive

Transformer (AT) and non-AT (NAT) algorithms on Librispeech.

WER (%) RTF
Type dev- dev- test- test- test-
clean other  clean other clean
Without LM
RETURNN [1] AT 43 12.9 44 13.5 -
ESPNet AT 3.2 8.5 3.6 8.4 -
AT (ours) | AT 3.4 8.5 3.6 85 0562 ]
Imputer [16] NAT - - 4.0 111 -
BPA NAT 44 10.6 4.5 10.7 0.005
CASS-NAT BSA NAT 3.9 9.6 3.9 9.6 0.655
ESA NAT 37 9.2 3.8 9.1 0.011
With LM
RETURNN [1] AT 2.6 8.4 2.8 9.3 -
ESPNet [25] AT 2.3 5.6 2.6 5:7 -
AT (ours) AT 2.5 5.7 27 5.8 -
CASS-NAT | ESA | NAT 33 80 33 8.1 =

7 pallinc

ESA decoding reduces WER significantly
compared to both BPA and BSA and has
a moderate increase of RTF over BPA.
When no external LM is used, the
proposed CASS-NAT is 51.2x faster than
AT in terms of RTF, while has ~6%
relative WER reduction.

When using an external LM, the gap of
WER between AT baselines and
CASS-NAT is increasing.
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. To analyze the alignment used for inference, two metrics are used

o Mismatch rate (MR)
m Deletion and insertion errors compared to the oracle alignment
m Substitution errors do not affect token-level acoustic embedding extraction.

o Length prediction error rate (LPER)
m Taking the alignment as output and removing blank and repetitions, the ratio of

utterances with different length compared to ground truth.

m The length is equivalent to the number of tokens as the length of decoder input.

« Goal: find out why ESA works well.
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A comparison of different alignment generation methods in CASS-NAT decoding without LM.

Alignment S WER (%) MR (%) LPER (%)

test- test- test- test- test- test-

clean other «clean other clean other

Oracle n/a 23 5.8 n/a n/a n/a n/a
BSA n/a 39 9.6 22 5.8 279 48.3
BPA n/a 4.5 10.7 2:1 49 31.0 51.8

10 39 04 2.9 31 26.4 42.8

ESA 50 3.8 0.1 3.1 5.8 25.3 41.9
100 3.8 9.0 3.0 5.8 25.1 41.8

300 3.8 9.0 3.1 5.8 25.1 41.9

« With oracle alignment, the lower bound of WER can be 2.3% for test-clean set.

« For ESA, no further gains are observed when the number of sampled alignments is over 50.

« Correct estimation of the decoder input length is more important for NAT.
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Length prediction error distributions and corresponding WERs with ESA(s=50) decoding on the test-clean dataset.
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Length difference with the oracle alignment

« The WER can be lowered than 2% for the utterances with correct token number estimation.

« The figure shows the importance of length prediction accuracy on the encoder side again.
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e Input and output:

o 80-dim log-mel filter bank features, computed every 10ms with a 25ms window.

o Every 3 consecutive frames are concatenated to form a 240-dim input.

o The output labels consist of 4230 Chinese characters obtained from training set.
« Model

o 2 CNNs: 64 filter, kernel size 3, stride 2 => 4x frame rate reduction

o AT baseline: Ne. =6,Nyg=6,dpp = 2048, H = 8, dypa = 512

o CASS-NAT:

m 1-layer token-acoustic extractor

m Decoder: 3 self-att blocks and 4 mix-attn blocks

o SpecAug, Speed perturbation, Label smoothing, Encoder initialization
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A comparison of WERs on Aishell1 with the existing works.

CER(%) NAT Type Dev  Test

AT (ours) n/a 5.5 5.9
Masked-NAT [13] iterative 6.4 7.1
Insertion-NAT [15] iterative 6.1 6.7
ST-NAT [18] single step 6.9 1.7
LASO [17] single step 5.8 6.4
CASS-NAT (ours) single step 5.3 5.8

o Our proposed CASS-NAT is better than previous work.
o CASS-NAT is slightly better than AT, which is promising.

« Our framework generalizes well according to the AT baseline.
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« This work presented a novel CASS-NAT framework

O

(@]

(@]

(@]

CTC alignment is used as auxiliary information to extract token-level acoustic embedding.
The word embedding in AT is replaced with acoustic embedding for parallel generation.
Viterbi-alignment is used for training.

An error-based sampling alignment is proposed for inference.

. The importance of length prediction for decoder input is shown by analyzing the relationships

between different alignments and the oracle alignment.

« We decrease the gap between AT and NAT, and maintain the acceleration for NAT.
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