
● CTC training sometimes shows slow convergence.
● ratio = 0, pure CTC training; ratio=1, pure CE training
● CE warmup and CTC, CE joint training can both help the

convergence in the pretraining.
● CE and CTC joint training with a half-half ratio achieves the

best performance with HuBERT Iter1 and PBERT IDs.
● Pure CTC training for HuBERT iter2 IDs is better.
● Overall, 0.5CTC + 0.5CE would the best choice for CTCBERT.

● CTC introduces an additional “blank” token to solve the
length mismatch between the input and output sequences.

● Define a mapping rule β that removes blank and repetitive
tokens of a sequence, CTC can be described as:

● Hidden-unit BERT (HuBERT)
○ K-means clustering to create a learning ID (pseudo-label)

for each frame
○ Iterative pretraining to improve the label quality
○ 1st iter on MFCC features, 2nd iter on HuBERT features

● Recently, self-supervised learning (SSL) has achieved a great
success in ASR, especially for low-resource tasks.

● Typical ID-based SSL learning in speech:
○ HuBERT: clustered IDs from MFCC or hidden features
○ PBERT: aligned IDs from hybrid models trained with a

small amount of supervised data
● ID-based SSL methods are similar to acoustic model training

with cross-entropy (CE) loss.
● However, we observe significant errors in these IDs,

including low-quality labels and misalignment (Figure 1).

● Low quality labels can be improved by iterative pretraining,
such as HuBERT 1st and 2nd iterations.

● Inspired by the example in Figure 1, we propose to use CTC
as the objective function to perform ID-based SSL training,
and denote it as CTCBERT.

● We examine CTCBERT on IDs from HuBERT Iter1, HuBERT
Iter2, and PBERT. The CTC training brings consistent
improvements compared to the CE training.

● Slight improvements are observed when loading
blank-related parameters during finetuning.

Introduction

CTCBERT: Advancing Hidden-unit BERT with CTC Objectives
Ruchao Fan1, Yiming Wang2, Yashesh Gaur2, Jinyu Li2

fanruchao@g.ucla.edu
¹University of California, Los Angeles, USA

²Microsoft Corporation, USA

Table 1. The performance of CTCBERT using IDs from HuBERT Iter1,
HuBERT Iter2, and PBERT. “Load blk” indicates loading blank related

parameters during finetuning.

● Forced aligned IDs from a hybrid model trained with 100
hours data. The quality of IDs on 100h is better than 960h.

● Using the forced aligned IDs to compute posterior probability
on 100h and 960h data.

● The relative probability decrease:
○ CTC: (0.8270-0.8025)/0.8270 = 2.9%
○ CE: (0.5886 - 0.5712)/0.5886 = 3.1%

● CTC causes less degradation on posterior probability,
showing that it is more tolerate to misalignment.

Background
1. ID-based SSL for speech

The number is appeared as the same in the paper.

Conclusion
● Training ID-based SSL system with CTC objectives offers more

robust model to misalignment in the learned IDs.
● CTCBERT achieves consistent improvements on the HuBERT

and PBERT IDs compared to the CE training.
● Empirical setting of a half-half ratio for CTC CE joint training

can best stabilize the CTCBERT training.

References

Experimental Settings

● CTCBERT consistently improves the WER performance on
the three examined training IDs over the CE training.

● The improvements are larger on noisy data. It may be
because noisy speech are more likely to generate IDs with
misalignments.

● Using blank-related parameters during finetuning further
improves the performance slightly.

● Note that we replicate the results of HuBERT and PBERT,
and may cause WER differences (different IDs from different
k-means cluster). However, the comparisons are reasonable
because of the same learning IDs for CE and CTC training.

3. Quantitative Analysis

Table 2. The effect of the CE warmup and CTC, CE joint training.● Dataset:
○ Librispeech 960 hours as the pretraining data
○ Train-clean-100 subset as the finetuning data

● Model architecture is the same as HuBERT [22]
● Pretraining:

○ HuBERT iter1 IDs: k-means of MFCC features
○ HuBERT iter2 IDs: k-means of 9-th layer HuBERT features

from the first iteration
○ PBERT IDs: decode 960-hour data with a hybrid model

trained with train-clean-100 subset
○ All models are trained on 32 GPUs with a batch size of at

most 87.5 seconds of audios per GPU.
○ Same training strategies as the HuBERT [22]

● Finetuning
○ 8 GPUs with a batch size of 200s audio per GPU
○ Freeze the convolutional feature extractor
○ CTC loss training for 80k steps
○ Beam search decoding: a beam size of 1500 and a

4-gram LM using wav2letter++ decoder [30].

1. Main Results

Figure 1. PBERT and forced alignment IDs for an utterance in
Librispeech test other data.. The forced aligned IDs are obtained

from a hybrdi model trained with 960h data.

2. Connectionist Temporal Classification (CTC)

3. Manipulate blank-related parameters

● The example (last row) in Figure 1:
○ Aligned IDs: 229 229 293 293 293 189 189
○ Ground-truth IDs: 229 229 229 293 189 189 189
○ For CE loss, two frames get wrong targets
○ For CTC loss, the targets are {229, 293, 189} for both IDs.

● CTC training is not sensitive to the frame alignment
● CTCBERT: constructing training targets

○ Define a rule A to remove the repetitive IDs in each mask
region, the IDs after operation A are the training targets.

○ Let be the masked regions,

 be the original IDs for those regions,
the CTCBERT loss can be described as:

● Phoneme BERT (PBERT):
○ training a hybrid model with the paired finetuning data
○ Applying decoding on the training data to get the ID for

each frame
○ One iteration is enough because of the high label quality

● Let Z be the hidden feature sequence, C be the learning IDs,
then the ID-based SSL models can be trained with:.

CTCBERT
1. Motivation

2. Stabilize the CTC training

● CTC training of the ID-based SSL methods causes slow
convergence sometimes.

● To stabilize the training, we can use:
○ CE loss warmup
○ CTC and CE joint training

● CTCBERT pretraining involves blank-related parameters,
which also exist in finetuning with CTC loss.

● The corresponding parameters can be used for initialization
for better performance.

Results

2. Stabilize the CTC training

mailto:fanruchao@g.ucla.edu

